Sender-Equivocable Encryption Schemes Secure against Chosen-Ciphertext Attacks Revisited
نویسندگان
چکیده
In Eurocrypt 2010, Fehr et al. proposed the first sender equivocable encryption scheme secure against chosen-ciphertext attack (NC-CCA) and proved that NC-CCA security implies security against selective opening chosen-ciphertext attack (SO-CCA). The NC-CCA security proof of the scheme relies on security against substitution attack of a new primitive, “cross-authentication code”. However, the security of cross-authentication code can not be guaranteed when all the keys used in the code are exposed. Our key observation is that in the NC-CCA security game, the randomness used in the generation of the challenge ciphertext is exposed to the adversary. This random information can be used to recover all the keys involved in cross-authentication code, and forge a ciphertext (like a substitution attack of cross-authentication code) that is different from but related to the challenge ciphertext. And the response of decryption oracle, with respect to the forged ciphertext, leaks information. This leaked information can be employed by an adversary to spoil the NC-CCA security proof of Fehr et al.’s scheme encrypting multi-bit plaintext. In this paper, we provide a security analysis of Fehr et al.’s scheme, showing that its NC-CCA security proof is flawed by presenting an attack. We point out that Fehr et al.’s scheme encrypting single-bit plaintext can be refined to achieve NC-CCA security, free of cross-authentication code. We introduce the strong notion of cross-authentication code, apply it to Fehr et al.’s scheme, and show that the new version of Fehr et al.’s scheme achieves NC-CCA security for multi-bit plaintext.
منابع مشابه
Chosen-Ciphertext Security of Multiple Encryption
Encryption of data using multiple, independent encryption schemes (“multiple encryption”) has been suggested in a variety of contexts, and can be used, for example, to protect against partial key exposure or cryptanalysis, or to enforce threshold access to data. Most prior work on this subject has focused on the security of multiple encryption against chosen-plaintext attacks, and has shown con...
متن کاملID-based Encryption Scheme Secure against Chosen Ciphertext Attacks
ID-based encryption allows for a sender to encrypt a message to an identity without access to a public key certificate. Based on the bilinear pairing, Boneh and Franklin proposed the first practical IDbased encryption scheme and used the padding technique of FujisakiOkamto to extend it to be a chosen ciphertext secure version. In this letter, we would like to use another padding technique to pr...
متن کاملAnonymous Multi-Receiver Identity-Based Authenticated Encryption with CCA Security
In a multi-receiver encryption system, a sender chooses a set of authorized receivers and sends them a message securely and efficiently, as the message is well encrypted and only one ciphertext corresponding to the message is generated no matter how many receivers the sender has chosen. It can be applied to video conferencing systems, pay-per-view channels, remote education, and so forth. Due t...
متن کاملChosen-Ciphertext Security from Identity-Based Encryption
We propose simple and efficient CCA-secure public-key encryption schemes (i.e., schemes secure against adaptive chosen-ciphertext attacks) based on any identity-based encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a new paradigm for achieving CCA-security; this paradigm avoids “proofs of well-formedness” that hav...
متن کاملBounded CCA2-Secure Encryption
Whereas encryption schemes withstanding passive chosenplaintext attacks (CPA) can be constructed based on a variety of computational assumptions, only a few assumptions are known to imply the existence of encryption schemes withstanding adaptive chosen-ciphertext attacks (CCA2). Towards addressing this asymmetry, we consider a weakening of the CCA2 model — bounded CCA2-security — wherein securi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 25 شماره
صفحات -
تاریخ انتشار 2012